Ventajas y Desventajas Del Acero Como Material Estructural

Ventajas

Alta resistencia

La alta resistencia del acero por unidad de peso implica que será relativamente bajo el peso de las estructuras; esto es de gran importancia en puentes de grandes claros, en edificios altos y en estructuras con condiciones deficientes en la cimentación.

Uniformidad

Las propiedades del acero no cambian apreciablemente con el tiempo, como es el caso de las estructuras de concreto reforzado.

Elasticidad

El acero se acerca más en su comportamiento a las hipótesis de diseño que la mayoría de los materiales, debido a que sigue la ley de Hooke hasta esfuerzos bastante altos. Los momentos de inercia de una estructura de acero se pueden calcular exactamente, en tanto que los valores obtenidos para una estructura de concreto reforzado son relativamente imprecisos.

Durabilidad

Si el mantenimiento de las estructuras de acero es adecuado duraran indefinidamente. Investigaciones realizadas en los aceros modernos, indican que bajo ciertas condiciones no se requiere ningún mantenimiento a base de pintura.

Ductilidad

La ductilidad es la propiedad que tiene un material para soportar grandes deformaciones sin fallar bajo esfuerzos de tensión altos. Cuando se prueba a tensión un acero dulce o con bajo contenido de carbono, ocurre una reducción considerable de la sección transversal y un gran alargamiento en el punto de falla, antes de que se presente la fractura. Un material que no tenga esta propiedad por lo general es inaceptable y probablemente será duro y frágil y se romperá al someterlo a un golpe repentino.

En miembros estructurales sometidos a cargas normales se desarrollan altas concentraciones de esfuerzos en varios puntos. La naturaleza dúctil de los aceros estructurales comunes les permite fluir localmente en esos puntos, evitándose así fallas prematuras. Una ventaja adicional de las estructuras dúctiles es que, al sobrecargarlas, sus grandes deflexiones ofrecen evidencia visible de la inminencia de la falla (algunas veces denominada en son de broma como “cuenta regresiva”).

Tenacidad

Los aceros estructurales son tenaces, es decir, poseen resistencia y ductilidad. Un miembro de acero cargado hasta que se presentan grandes deformaciones será aun capaz de resistir grandes fuerzas. Ésta es una característica muy importante porque implica que los miembros de acero pueden someterse a grandes deformaciones durante su fabricación y montaje, sin fracturarse, siendo posible doblarlos, martillarlos, cortarlos y taladrarlos sin daño aparente. La propiedad de un material para absorber energía en grandes cantidades se denomina tenacidad.

Ampliaciones de estructuras existentes

Las estructuras de acero se adaptan muy bien a posibles ampliaciones. Se pueden añadir nuevas crujías e incluso alas enteras a estructuras de acero ya existentes, y con frecuencia se pueden ampliar los puentes de acero.

Propiedades diversas

Algunas otras ventajas importantes del acero estructural son: a) gran facilidad para unir diversos miembros por medio de varios tipos de conexión simple, como son la soldadura y los pernos; b) posibilidad de prefabricar los miembros; c) rapidez de montaje; d) capacidad para laminarse en una gran cantidad de tamaños y formas, e) es posible utilizarlo nuevamente después de desmontar una estructura; y f) posibilidad de venderlo como chatarra, aunque no pueda utilizarse en su forma existente. El acero es el material reciclable por excelencia.

Desventajas

Corrosión

La mayor parte de los aceros son susceptibles a la corrosión al estar expuestos al aire y al agua y, por consiguiente, deben pintarse periódicamente. Sin embargo, el uso de aceros intemperizados para ciertas aplicaciones, tiende a eliminar este costo.

Aunque los aceros intemperizados pueden ser bastante efectivos en ciertas situaciones para limitar la corrosión, hay muchos casos donde su uso no es factible. En algunas de estas situaciones, la corrosión puede ser un problema real. Por ejemplo, las fallas por corrosiónfatiga pueden ocurrir si los miembros de acero se someten a esfuerzos cíclicos y a ambientes corrosivos. La resistencia a la fatiga de los miembros de acero puede reducirse apreciablemente cuando los miembros se usan en ambientes químicos agresivos y sometidos a cargas cíclicas.

Costo de la protección contra el fuego

Aunque los miembros estructurales son incombustibles, sus resistencias se reducen considerablemente en temperaturas que comúnmente se alcanzan en incendios, cuando los otros materiales de un edificio se queman. Han ocurrido muchos incendios devastadores en inmuebles vacíos en los que el único material combustible es el mismo inmueble. Además, el acero es un excelente conductor del calor, de manera que los miembros de acero sin protección pueden transmitir suficiente calor de una sección o compartimiento incendiado de un edificio a secciones adyacentes del mismo edificio e incendiar el material presente. En consecuencia, la estructura de acero de un edificio debe protegerse mediante materiales con ciertas características aislantes, y el edificio deberá acondicionarse con un sistema de rociadores para que cumpla con los requisitos de seguridad del código de construcciones de la localidad en que se halle.

Susceptibilidad al pandeo

Cuanto más largos y esbeltos sean los miembros a compresión, tanto mayor es el peligro de pandeo. En la mayoría de las estructuras, el uso de columnas de acero es muy económico debido a sus relaciones elevadas de resistencia a peso. Sin embargo, en forma ocasional, se necesita algún acero adicional para rigidizarlas y que no se pandeen. Esto tiende a reducir su economía.

Fatiga

Otra característica inconveniente del acero es que su resistencia se puede reducir si se somete a un gran número de inversiones del sentido del esfuerzo, o bien, a un gran número de cambios en la magnitud del esfuerzo de tensión. (Se tienen problemas de fatiga sólo cuando se presentan tensiones.) En la práctica actual se reducen las resistencias estimadas de tales miembros, si se sabe de antemano que estarán sometidos a un número mayor de ciclos de esfuerzo variable, que cierto número límite.

Fractura frágil

Bajo ciertas condiciones, el acero puede perder su ductilidad y la fractura frágil puede ocurrir en lugares de concentración de esfuerzos. Las cargas que producen fatiga y muy bajas temperaturas agravan la situación. Las condiciones de esfuerzo triaxial también pueden conducir a la fractura frágil.